xp^5-yp^4+(x^2+1)p^3-2xyp^2+(x+y^2)p-y=0

Simple and best practice solution for xp^5-yp^4+(x^2+1)p^3-2xyp^2+(x+y^2)p-y=0 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for xp^5-yp^4+(x^2+1)p^3-2xyp^2+(x+y^2)p-y=0 equation:


Simplifying
xp5 + -1yp4 + (x2 + 1) * p3 + -2xyp2 + (x + y2) * p + -1y = 0

Reorder the terms:
p5x + -1p4y + (1 + x2) * p3 + -2xyp2 + (x + y2) * p + -1y = 0

Reorder the terms for easier multiplication:
p5x + -1p4y + p3(1 + x2) + -2xyp2 + (x + y2) * p + -1y = 0
p5x + -1p4y + (1 * p3 + x2 * p3) + -2xyp2 + (x + y2) * p + -1y = 0
p5x + -1p4y + (1p3 + p3x2) + -2xyp2 + (x + y2) * p + -1y = 0

Reorder the terms for easier multiplication:
p5x + -1p4y + 1p3 + p3x2 + -2p2xy + p(x + y2) + -1y = 0
p5x + -1p4y + 1p3 + p3x2 + -2p2xy + (x * p + y2 * p) + -1y = 0
p5x + -1p4y + 1p3 + p3x2 + -2p2xy + (px + py2) + -1y = 0

Reorder the terms:
px + py2 + -2p2xy + 1p3 + p3x2 + -1p4y + p5x + -1y = 0

Solving
px + py2 + -2p2xy + 1p3 + p3x2 + -1p4y + p5x + -1y = 0

Solving for variable 'p'.

The solution to this equation could not be determined.

See similar equations:

| (1-cos(8x))/(1-tg(x))=1 | | 9t+4=-86 | | 20y=9x | | 9x=20y | | (3x^2-4x-1)+(4x-x^2+5)= | | 1+3(x-7)=8-7(x-4) | | 8x-((6x-1)/2)=5 | | 8x-((6x-1)/2=5 | | 1.43p+4.88=21.15 | | X^2+y^2+6x-6y+6=0 | | T-8+5=15 | | 0.8x+0.6y=600 | | 252n+1=625 | | 2. 7n=343 | | 0.19(y-2)+0.07y=0.06y-0.30 | | 3*9+b=6*b+3 | | 4n+5=69 | | 5*s+12=10*3-s | | 49.10=(2.10x)+5 | | 12/3b^3 | | 5+6(x-4)=1-4(x-7) | | x+.2x=548 | | 90-x=44.9 | | Y=1/4*-8-3 | | 3y=6/5 | | qx^2-4qx+5-9=0 | | Y=1/4•-8-3 | | y^4-17y^2+72= | | X+0.07*x+0.20(x+0.07*x)=37 | | graphy=3x-14 | | 3x^2+3y^2-30x-6y-69=0 | | 5g-g=12 |

Equations solver categories